Übung
$\frac{d}{dx}\left(\frac{sin^4xtan^6x^4}{\left(x^2+3\right)^2}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx((sin(x)^4tan(x^4)^6)/((x^2+3)^2)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\sin\left(x\right)^4\tan\left(x^4\right)^6}{\left(x^2+3\right)^2}\right) und x=\frac{\sin\left(x\right)^4\tan\left(x^4\right)^6}{\left(x^2+3\right)^2}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\sin\left(x\right)^4\tan\left(x^4\right)^6}{\left(x^2+3\right)^2}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\sin\left(x\right)^4\tan\left(x^4\right)^6}{\left(x^2+3\right)^2}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=4\ln\left(\sin\left(x\right)\right)+6\ln\left(\tan\left(x^4\right)\right)-2\ln\left(x^2+3\right).
Find the derivative d/dx((sin(x)^4tan(x^4)^6)/((x^2+3)^2))
Endgültige Antwort auf das Problem
$\left(4\cot\left(x\right)+24x^{3}\sec\left(x^4\right)\csc\left(x^4\right)+\frac{-4x}{x^2+3}\right)\frac{\sin\left(x\right)^4\tan\left(x^4\right)^6}{\left(x^2+3\right)^2}$