Übung
$\frac{d}{dx}\left(\frac{sin^2x+tan^4x}{\left(x^2+2\right)^2}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve polynomielle faktorisierung problems step by step online. Find the derivative d/dx((sin(x)^2+tan(x)^4)/((x^2+2)^2)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\sin\left(x\right)^2+\tan\left(x\right)^4}{\left(x^2+2\right)^2}\right) und x=\frac{\sin\left(x\right)^2+\tan\left(x\right)^4}{\left(x^2+2\right)^2}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\sin\left(x\right)^2+\tan\left(x\right)^4}{\left(x^2+2\right)^2}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\sin\left(x\right)^2+\tan\left(x\right)^4}{\left(x^2+2\right)^2}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=\ln\left(\sin\left(x\right)^2+\tan\left(x\right)^4\right)-2\ln\left(x^2+2\right).
Find the derivative d/dx((sin(x)^2+tan(x)^4)/((x^2+2)^2))
Endgültige Antwort auf das Problem
$\left(\frac{2\sin\left(x\right)\cos\left(x\right)+4\tan\left(x\right)^{3}\sec\left(x\right)^2}{\sin\left(x\right)^2+\tan\left(x\right)^4}+\frac{-4x}{x^2+2}\right)\frac{\sin\left(x\right)^2+\tan\left(x\right)^4}{\left(x^2+2\right)^2}$