Übung
$\frac{d}{dx}\left(\frac{\left(x^3\left(x-2\right)^2\right)}{\left(x^2+9\right)^9}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve trigonometrische identitäten problems step by step online. Find the derivative d/dx((x^3(x-2)^2)/((x^2+9)^9)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{x^3\left(x-2\right)^2}{\left(x^2+9\right)^9}\right) und x=\frac{x^3\left(x-2\right)^2}{\left(x^2+9\right)^9}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{x^3\left(x-2\right)^2}{\left(x^2+9\right)^9}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{x^3\left(x-2\right)^2}{\left(x^2+9\right)^9}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=3\ln\left(x\right)+2\ln\left(x-2\right)-9\ln\left(x^2+9\right).
Find the derivative d/dx((x^3(x-2)^2)/((x^2+9)^9))
Endgültige Antwort auf das Problem
$\left(\frac{3}{x}+\frac{2}{x-2}+\frac{-18x}{x^2+9}\right)\frac{x^3\left(x-2\right)^2}{\left(x^2+9\right)^9}$