Übung
$\frac{d}{dx}\left(\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve grenzwerte von exponentialfunktionen problems step by step online. Find the derivative d/dx(((x+3)^2(x-1)^5)/(x^(1/2)(2x+7))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}\right) und x=\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=2\ln\left(x+3\right)+5\ln\left(x-1\right)-\frac{1}{2}\ln\left(x\right)-\ln\left(2x+7\right).
Find the derivative d/dx(((x+3)^2(x-1)^5)/(x^(1/2)(2x+7)))
Endgültige Antwort auf das Problem
$\left(\frac{2}{x+3}+\frac{5}{x-1}+\frac{-1}{2x}+\frac{-2}{2x+7}\right)\frac{\left(x+3\right)^2\left(x-1\right)^5}{\sqrt{x}\left(2x+7\right)}$