Übung
$\frac{d}{dx}\left(\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve grenzwerte durch direkte substitution problems step by step online. Find the derivative d/dx(((x+1)(6x+1)(7x+1))/((2x+1)^(1/2))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}\right) und x=\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=\ln\left(x+1\right)+\ln\left(6x+1\right)+\ln\left(7x+1\right)- \left(\frac{1}{2}\right)\ln\left(2x+1\right).
Find the derivative d/dx(((x+1)(6x+1)(7x+1))/((2x+1)^(1/2)))
Endgültige Antwort auf das Problem
$\left(\frac{1}{x+1}+\frac{6}{6x+1}+\frac{7}{7x+1}+\frac{-1}{2x+1}\right)\frac{\left(x+1\right)\left(6x+1\right)\left(7x+1\right)}{\sqrt{2x+1}}$