Übung
$\frac{d}{dx}\left(\frac{\left(7x^5cosx\right)}{\left(x-1\right)^{\frac{2}{3}}e^{x+1}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve algebraische ausdrücke problems step by step online. Find the derivative d/dx((7x^5cos(x))/((x-1)^(2/3)e^(x+1))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{7x^5\cos\left(x\right)}{\sqrt[3]{\left(x-1\right)^{2}}e^{\left(x+1\right)}}\right) und x=\frac{7x^5\cos\left(x\right)}{\sqrt[3]{\left(x-1\right)^{2}}e^{\left(x+1\right)}}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{7x^5\cos\left(x\right)}{\sqrt[3]{\left(x-1\right)^{2}}e^{\left(x+1\right)}}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{7x^5\cos\left(x\right)}{\sqrt[3]{\left(x-1\right)^{2}}e^{\left(x+1\right)}}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=5\ln\left(x\right)+\ln\left(7\cos\left(x\right)\right)-\frac{2}{3}\ln\left(x-1\right)-x-1.
Find the derivative d/dx((7x^5cos(x))/((x-1)^(2/3)e^(x+1)))
Endgültige Antwort auf das Problem
$\left(\frac{5}{x}-\tan\left(x\right)+\frac{-2}{3\left(x-1\right)}-1\right)\frac{7x^5\cos\left(x\right)}{\sqrt[3]{\left(x-1\right)^{2}}e^{\left(x+1\right)}}$