Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Wenden Sie die Formel an: $\frac{d}{dx}\left(\arctan\left(\theta \right)\right)$$=\frac{1}{1+\theta ^2}\frac{d}{dx}\left(\theta \right)$, wobei $x=x-\sqrt{1+x^2}$
Learn how to solve problems step by step online.
$\frac{1}{1+\left(x-\sqrt{1+x^2}\right)^2}\frac{d}{dx}\left(x-\sqrt{1+x^2}\right)$
Learn how to solve problems step by step online. d/dx(arctan(x-(1+x^2)^(1/2))). Wenden Sie die Formel an: \frac{d}{dx}\left(\arctan\left(\theta \right)\right)=\frac{1}{1+\theta ^2}\frac{d}{dx}\left(\theta \right), wobei x=x-\sqrt{1+x^2}. Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen. Wenden Sie die Formel an: \frac{d}{dx}\left(cx\right)=c\frac{d}{dx}\left(x\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=\frac{1}{2} und x=1+x^2.