Übung
$\frac{d}{dx}\frac{x^7lnx}{e^x}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx((x^7ln(x))/(e^x)). Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=x^7\ln\left(x\right) und b=e^x. Simplify \left(e^x\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals x and n equals 2. Wenden Sie die Formel an: \frac{d}{dx}\left(ab\right)=\frac{d}{dx}\left(a\right)b+a\frac{d}{dx}\left(b\right), wobei d/dx=\frac{d}{dx}, ab=x^7\ln\left(x\right), a=x^7, b=\ln\left(x\right) und d/dx?ab=\frac{d}{dx}\left(x^7\ln\left(x\right)\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}.
Find the derivative d/dx((x^7ln(x))/(e^x))
Endgültige Antwort auf das Problem
$\frac{\left(7x^{6}\ln\left(x\right)+x^{6}\right)e^x-x^7e^x\ln\left(x\right)}{e^{2x}}$