Übung
$\frac{d}{dx}\:\frac{\left(x+3\right)^9}{\left(4x-16\right)^{10}}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx(((x+3)^9)/((4x-16)^10)). Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=\left(x+3\right)^9 und b=\left(4x-16\right)^{10}. Simplify \left(\left(4x-16\right)^{10}\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 10 and n equals 2. Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=9 und x=x+3. Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right), wobei a=10 und x=4x-16.
Find the derivative d/dx(((x+3)^9)/((4x-16)^10))
Endgültige Antwort auf das Problem
$\frac{9\left(x+3\right)^{8}\left(4x-16\right)^{10}-40\left(x+3\right)^9\left(4x-16\right)^{9}}{\left(4x-16\right)^{20}}$