Übung
$\frac{d}{d\theta}\left(\frac{2\theta^8sin\theta}{3\sqrt{sec\theta}}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dt((2t^8sin(t))/(3sec(t)^(1/2))). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dt}, d/dx?x=\frac{d}{dt}\left(\frac{2\theta^8\sin\left(\theta\right)}{3\sqrt{\sec\left(\theta\right)}}\right), dx=dt und x=\frac{2\theta^8\sin\left(\theta\right)}{3\sqrt{\sec\left(\theta\right)}}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{2\theta^8\sin\left(\theta\right)}{3\sqrt{\sec\left(\theta\right)}}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{2\theta^8\sin\left(\theta\right)}{3\sqrt{\sec\left(\theta\right)}}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=8\ln\left(\theta\right)+\ln\left(2\sin\left(\theta\right)\right)-\ln\left(3\sqrt{\sec\left(\theta\right)}\right).
Find the derivative d/dt((2t^8sin(t))/(3sec(t)^(1/2)))
Endgültige Antwort auf das Problem
$\left(\frac{8}{\theta}+\cot\left(\theta\right)+\frac{-\tan\left(\theta\right)}{2}\right)\frac{2\theta^8\sqrt{\cos\left(\theta\right)}\sin\left(\theta\right)}{3}$