Lösen: $\frac{d^2}{dx^2}\left(\frac{x^4+1}{x^2}\right)$
Übung
$\frac{d^2}{dx^2}\frac{x^4+1}{x^2}$
Schritt-für-Schritt-Lösung
Zwischenschritte
1
Ermitteln Sie die Ableitung ($1$)
$\frac{4x^{3}x^2-2\left(x^4+1\right)x}{x^{4}}$
Zwischenschritte
$\frac{4x^{5}-2\left(x^4+1\right)x}{x^{4}}$
Zwischenschritte
3
Ermitteln Sie die Ableitung ($2$)
$\frac{\left(20x^{4}-2\left(4x^{3}x+x^4+1\right)\right)x^{4}-4\left(4x^{5}-2\left(x^4+1\right)x\right)x^{3}}{x^{8}}$
Zwischenschritte
$\frac{\left(20x^{4}-2\left(4x^{4}+x^4+1\right)\right)x^{4}-4\left(4x^{5}-2\left(x^4+1\right)x\right)x^{3}}{x^{8}}$
Endgültige Antwort auf das Problem
$\frac{\left(20x^{4}-2\left(4x^{4}+x^4+1\right)\right)x^{4}-4\left(4x^{5}-2\left(x^4+1\right)x\right)x^{3}}{x^{8}}$