Übung
$\frac{cot\left(x\right)}{sen\left(x\right)}+csc\left(x\right)cot\left(x\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. cot(x)/sin(x)+csc(x)cot(x). Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: \frac{\frac{a}{b}}{c}=\frac{a}{bc}, wobei a=\cos\left(x\right), b=\sin\left(x\right), c=\sin\left(x\right), a/b/c=\frac{\frac{\cos\left(x\right)}{\sin\left(x\right)}}{\sin\left(x\right)} und a/b=\frac{\cos\left(x\right)}{\sin\left(x\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\csc\left(x\right), b=\cos\left(x\right) und c=\sin\left(x\right).
cot(x)/sin(x)+csc(x)cot(x)
Endgültige Antwort auf das Problem
$\frac{2\cos\left(x\right)}{\sin\left(x\right)^2}$