Übung
$\frac{cosx}{secx}-\frac{senx}{cotx}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. cos(x)/sec(x)+(-sin(x))/cot(x). Anwendung der trigonometrischen Identität: \sec\left(\theta \right)=\frac{1}{\cos\left(\theta \right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\cos\left(x\right), b=1, c=\cos\left(x\right), a/b/c=\frac{\cos\left(x\right)}{\frac{1}{\cos\left(x\right)}} und b/c=\frac{1}{\cos\left(x\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=-\sin\left(x\right), b=\cos\left(x\right), c=\sin\left(x\right), a/b/c=\frac{-\sin\left(x\right)}{\frac{\cos\left(x\right)}{\sin\left(x\right)}} und b/c=\frac{\cos\left(x\right)}{\sin\left(x\right)}.
cos(x)/sec(x)+(-sin(x))/cot(x)
Endgültige Antwort auf das Problem
$\frac{\cos\left(x\right)^{3}-\sin\left(x\right)^2}{\cos\left(x\right)}$