Übung
$\frac{90r^3+145r^2+77r+29}{9r+10}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $90r^3+145r^2+77r+29$ durch $9r+10$
$\begin{array}{l}\phantom{\phantom{;}9r\phantom{;}+10;}{\phantom{;}10r^{2}+5r\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}9r\phantom{;}+10\overline{\smash{)}\phantom{;}90r^{3}+145r^{2}+77r\phantom{;}+29\phantom{;}\phantom{;}}\\\phantom{\phantom{;}9r\phantom{;}+10;}\underline{-90r^{3}-100r^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-90r^{3}-100r^{2};}\phantom{;}45r^{2}+77r\phantom{;}+29\phantom{;}\phantom{;}\\\phantom{\phantom{;}9r\phantom{;}+10-;x^n;}\underline{-45r^{2}-50r\phantom{;}\phantom{-;x^n}}\\\phantom{;-45r^{2}-50r\phantom{;}-;x^n;}\phantom{;}27r\phantom{;}+29\phantom{;}\phantom{;}\\\phantom{\phantom{;}9r\phantom{;}+10-;x^n-;x^n;}\underline{-27r\phantom{;}-30\phantom{;}\phantom{;}}\\\phantom{;;-27r\phantom{;}-30\phantom{;}\phantom{;}-;x^n-;x^n;}-1\phantom{;}\phantom{;}\\\end{array}$
$10r^{2}+5r+3+\frac{-1}{9r+10}$
Endgültige Antwort auf das Problem
$10r^{2}+5r+3+\frac{-1}{9r+10}$