Übung
$\frac{8x^{7}+20x^{6}-5x-7}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $8x^7+20x^6-5x-7$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}8x^{6}+12x^{5}-12x^{4}+12x^{3}-12x^{2}+12x\phantom{;}-17\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}8x^{7}+20x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-5x\phantom{;}-7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-8x^{7}-8x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-8x^{7}-8x^{6};}\phantom{;}12x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-5x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{-12x^{6}-12x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-12x^{6}-12x^{5}-;x^n;}-12x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-5x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}12x^{5}+12x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;\phantom{;}12x^{5}+12x^{4}-;x^n-;x^n;}\phantom{;}12x^{4}\phantom{-;x^n}\phantom{-;x^n}-5x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{-12x^{4}-12x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;-12x^{4}-12x^{3}-;x^n-;x^n-;x^n;}-12x^{3}\phantom{-;x^n}-5x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}12x^{3}+12x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;\phantom{;}12x^{3}+12x^{2}-;x^n-;x^n-;x^n-;x^n;}\phantom{;}12x^{2}-5x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-12x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;;;-12x^{2}-12x\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n;}-17x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}17x\phantom{;}+17\phantom{;}\phantom{;}}\\\phantom{;;;;;;\phantom{;}17x\phantom{;}+17\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}10\phantom{;}\phantom{;}\\\end{array}$
$8x^{6}+12x^{5}-12x^{4}+12x^{3}-12x^{2}+12x-17+\frac{10}{x+1}$
Endgültige Antwort auf das Problem
$8x^{6}+12x^{5}-12x^{4}+12x^{3}-12x^{2}+12x-17+\frac{10}{x+1}$