Übung
$\frac{6x^3+17x^2+21x+19}{3x+4}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3+17x^2+21x+19$ durch $3x+4$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}+4;}{\phantom{;}2x^{2}+3x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}+4\overline{\smash{)}\phantom{;}6x^{3}+17x^{2}+21x\phantom{;}+19\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}+4;}\underline{-6x^{3}-8x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}-8x^{2};}\phantom{;}9x^{2}+21x\phantom{;}+19\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+4-;x^n;}\underline{-9x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;-9x^{2}-12x\phantom{;}-;x^n;}\phantom{;}9x\phantom{;}+19\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+4-;x^n-;x^n;}\underline{-9x\phantom{;}-12\phantom{;}\phantom{;}}\\\phantom{;;-9x\phantom{;}-12\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}7\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}+3x+3+\frac{7}{3x+4}$
Endgültige Antwort auf das Problem
$2x^{2}+3x+3+\frac{7}{3x+4}$