Übung
$\frac{6x^3+11x^2-23x+42}{2x+7}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3+11x^2-23x+42$ durch $2x+7$
$\begin{array}{l}\phantom{\phantom{;}2x\phantom{;}+7;}{\phantom{;}3x^{2}-5x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{;}2x\phantom{;}+7\overline{\smash{)}\phantom{;}6x^{3}+11x^{2}-23x\phantom{;}+42\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x\phantom{;}+7;}\underline{-6x^{3}-21x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}-21x^{2};}-10x^{2}-23x\phantom{;}+42\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}+7-;x^n;}\underline{\phantom{;}10x^{2}+35x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}10x^{2}+35x\phantom{;}-;x^n;}\phantom{;}12x\phantom{;}+42\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}+7-;x^n-;x^n;}\underline{-12x\phantom{;}-42\phantom{;}\phantom{;}}\\\phantom{;;-12x\phantom{;}-42\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$3x^{2}-5x+6$