Übung
$\frac{5x^3-4x+3x^2-7}{x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $5x^3-4x+3x^2-7$ durch $x+5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+5;}{\phantom{;}5x^{2}-22x\phantom{;}+106\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+5\overline{\smash{)}\phantom{;}5x^{3}+3x^{2}-4x\phantom{;}-7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+5;}\underline{-5x^{3}-25x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-5x^{3}-25x^{2};}-22x^{2}-4x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n;}\underline{\phantom{;}22x^{2}+110x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}22x^{2}+110x\phantom{;}-;x^n;}\phantom{;}106x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n;}\underline{-106x\phantom{;}-530\phantom{;}\phantom{;}}\\\phantom{;;-106x\phantom{;}-530\phantom{;}\phantom{;}-;x^n-;x^n;}-537\phantom{;}\phantom{;}\\\end{array}$
$5x^{2}-22x+106+\frac{-537}{x+5}$
Endgültige Antwort auf das Problem
$5x^{2}-22x+106+\frac{-537}{x+5}$