Übung
$\frac{4x^4+4x^3+x^2+x-8}{x-4}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4x^4+4x^3+x^2+x-8$ durch $x-4$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-4;}{\phantom{;}4x^{3}+20x^{2}+81x\phantom{;}+325\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-4\overline{\smash{)}\phantom{;}4x^{4}+4x^{3}+x^{2}+x\phantom{;}-8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-4;}\underline{-4x^{4}+16x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-4x^{4}+16x^{3};}\phantom{;}20x^{3}+x^{2}+x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n;}\underline{-20x^{3}+80x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-20x^{3}+80x^{2}-;x^n;}\phantom{;}81x^{2}+x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n;}\underline{-81x^{2}+324x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-81x^{2}+324x\phantom{;}-;x^n-;x^n;}\phantom{;}325x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n-;x^n;}\underline{-325x\phantom{;}+1300\phantom{;}\phantom{;}}\\\phantom{;;;-325x\phantom{;}+1300\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}1292\phantom{;}\phantom{;}\\\end{array}$
$4x^{3}+20x^{2}+81x+325+\frac{1292}{x-4}$
Endgültige Antwort auf das Problem
$4x^{3}+20x^{2}+81x+325+\frac{1292}{x-4}$