Übung
$\frac{4}{\sqrt{x+\sqrt{y}}}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Rationalize and simplify the expression 4/((x+y^(1/2))^(1/2)). Wenden Sie die Formel an: \frac{a}{b}=\frac{a}{b}\frac{radicalfactor\left(b\right)}{radicalfactor\left(b\right)}, wobei a=4 und b=\sqrt{x+\sqrt{y}}. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=4, b=\sqrt{x+\sqrt{y}}, c=\sqrt{x+\sqrt{y}}, a/b=\frac{4}{\sqrt{x+\sqrt{y}}}, f=\sqrt{x+\sqrt{y}}, c/f=\frac{\sqrt{x+\sqrt{y}}}{\sqrt{x+\sqrt{y}}} und a/bc/f=\frac{4}{\sqrt{x+\sqrt{y}}}\frac{\sqrt{x+\sqrt{y}}}{\sqrt{x+\sqrt{y}}}. Wenden Sie die Formel an: x\cdot x=x^2, wobei x=\sqrt{x+\sqrt{y}}. Wenden Sie die Formel an: \frac{a}{b}=\frac{a}{b}\frac{conjugate\left(b\right)}{conjugate\left(b\right)}, wobei a=4\sqrt{x+\sqrt{y}}, b=x+\sqrt{y} und a/b=\frac{4\sqrt{x+\sqrt{y}}}{x+\sqrt{y}}.
Rationalize and simplify the expression 4/((x+y^(1/2))^(1/2))
Endgültige Antwort auf das Problem
$\frac{4\sqrt{x+\sqrt{y}}\left(x-\sqrt{y}\right)}{x^2-y}$