Übung
$\frac{3x^5-2}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^5-2$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}3x^{4}-3x^{3}+3x^{2}-3x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}3x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-2\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-3x^{5}-3x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{5}-3x^{4};}-3x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}3x^{4}+3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}3x^{4}+3x^{3}-;x^n;}\phantom{;}3x^{3}\phantom{-;x^n}\phantom{-;x^n}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-3x^{3}-3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-3x^{3}-3x^{2}-;x^n-;x^n;}-3x^{2}\phantom{-;x^n}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{2}+3x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}3x^{2}+3x\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}3x\phantom{;}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n;}\underline{-3x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{;;;;-3x\phantom{;}-3\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n;}-5\phantom{;}\phantom{;}\\\end{array}$
$3x^{4}-3x^{3}+3x^{2}-3x+3+\frac{-5}{x+1}$
Endgültige Antwort auf das Problem
$3x^{4}-3x^{3}+3x^{2}-3x+3+\frac{-5}{x+1}$