Übung
$\frac{3x^4-25x^2-29}{x-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^4-25x^2-29$ durch $x-3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-3;}{\phantom{;}3x^{3}+9x^{2}+2x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-3\overline{\smash{)}\phantom{;}3x^{4}\phantom{-;x^n}-25x^{2}\phantom{-;x^n}-29\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-3;}\underline{-3x^{4}+9x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{4}+9x^{3};}\phantom{;}9x^{3}-25x^{2}\phantom{-;x^n}-29\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n;}\underline{-9x^{3}+27x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-9x^{3}+27x^{2}-;x^n;}\phantom{;}2x^{2}\phantom{-;x^n}-29\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n;}\underline{-2x^{2}+6x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-2x^{2}+6x\phantom{;}-;x^n-;x^n;}\phantom{;}6x\phantom{;}-29\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n-;x^n;}\underline{-6x\phantom{;}+18\phantom{;}\phantom{;}}\\\phantom{;;;-6x\phantom{;}+18\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-11\phantom{;}\phantom{;}\\\end{array}$
$3x^{3}+9x^{2}+2x+6+\frac{-11}{x-3}$
Endgültige Antwort auf das Problem
$3x^{3}+9x^{2}+2x+6+\frac{-11}{x-3}$