Themen

Übung

$\frac{3x^{17}+34x^2-45}{x+1}$

Schritt-für-Schritt-Lösung

1

Teilen Sie $3x^{17}+34x^2-45$ durch $x+1$

$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}3x^{16}-3x^{15}+3x^{14}-3x^{13}+3x^{12}-3x^{11}+3x^{10}-3x^{9}+3x^{8}-3x^{7}+3x^{6}-3x^{5}+3x^{4}-3x^{3}+3x^{2}+31x\phantom{;}-31\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}3x^{17}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-3x^{17}-3x^{16}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{17}-3x^{16};}-3x^{16}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}3x^{16}+3x^{15}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}3x^{16}+3x^{15}-;x^n;}\phantom{;}3x^{15}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-3x^{15}-3x^{14}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-3x^{15}-3x^{14}-;x^n-;x^n;}-3x^{14}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{14}+3x^{13}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}3x^{14}+3x^{13}-;x^n-;x^n-;x^n;}\phantom{;}3x^{13}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{13}-3x^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;-3x^{13}-3x^{12}-;x^n-;x^n-;x^n-;x^n;}-3x^{12}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{12}+3x^{11}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;\phantom{;}3x^{12}+3x^{11}-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}3x^{11}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{11}-3x^{10}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;-3x^{11}-3x^{10}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-3x^{10}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{10}+3x^{9}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;\phantom{;}3x^{10}+3x^{9}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}3x^{9}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{9}-3x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;-3x^{9}-3x^{8}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-3x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{8}+3x^{7}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;\phantom{;}3x^{8}+3x^{7}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}3x^{7}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{7}-3x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;-3x^{7}-3x^{6}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-3x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{6}+3x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;\phantom{;}3x^{6}+3x^{5}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}3x^{5}\phantom{-;x^n}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{5}-3x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;;-3x^{5}-3x^{4}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-3x^{4}\phantom{-;x^n}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}3x^{4}+3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;;;\phantom{;}3x^{4}+3x^{3}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}3x^{3}+34x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-3x^{3}-3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;;;;-3x^{3}-3x^{2}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\phantom{;}31x^{2}\phantom{-;x^n}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{-31x^{2}-31x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;;;;;;;;;;;;;-31x^{2}-31x\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-31x\phantom{;}-45\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}31x\phantom{;}+31\phantom{;}\phantom{;}}\\\phantom{;;;;;;;;;;;;;;;;\phantom{;}31x\phantom{;}+31\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n-;x^n;}-14\phantom{;}\phantom{;}\\\end{array}$
2

Resultierendes Polynom

$3x^{16}-3x^{15}+3x^{14}-3x^{13}+3x^{12}-3x^{11}+3x^{10}-3x^{9}+3x^{8}-3x^{7}+3x^{6}-3x^{5}+3x^{4}-3x^{3}+3x^{2}+31x-31+\frac{-14}{x+1}$

Endgültige Antwort auf das Problem

$3x^{16}-3x^{15}+3x^{14}-3x^{13}+3x^{12}-3x^{11}+3x^{10}-3x^{9}+3x^{8}-3x^{7}+3x^{6}-3x^{5}+3x^{4}-3x^{3}+3x^{2}+31x-31+\frac{-14}{x+1}$

Wie sollte ich dieses Problem lösen?

  • Wählen Sie eine Option
  • Schreiben Sie in der einfachsten Form
  • Lösen mit der quadratischen Formel (allgemeine Formel)
  • Vereinfachen Sie
  • Faktor
  • Finden Sie die Wurzeln
  • Mehr laden...
Sie können eine Methode nicht finden? Sagen Sie es uns, damit wir sie hinzufügen können.
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Ihr persönlicher Mathe-Nachhilfelehrer. Angetrieben von KI

Verfügbar 24/7, 365.

Vollständige Schritt-für-Schritt-Lösungen für Mathe. Keine Werbung.

Enthält mehrere Lösungsmethoden.

Laden Sie Lösungen im PDF-Format.

Premium-Zugang über unsere iOS- und Android-Apps.

Schließen Sie sich 500k+ Schülern bei der Lösung von Problemen an.

Wählen Sie Ihren Plan. Jederzeit kündigen.
Zahlen Sie $39,97 USD sicher mit Ihrer Zahlungsmethode.
Bitte warten Sie, während Ihre Zahlung bearbeitet wird.

Ein Konto erstellen