Übung
$\frac{3c^3+7c^2-4c+16}{c+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3c^3+7c^2-4c+16$ durch $c+3$
$\begin{array}{l}\phantom{\phantom{;}c\phantom{;}+3;}{\phantom{;}3c^{2}-2c\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;}c\phantom{;}+3\overline{\smash{)}\phantom{;}3c^{3}+7c^{2}-4c\phantom{;}+16\phantom{;}\phantom{;}}\\\phantom{\phantom{;}c\phantom{;}+3;}\underline{-3c^{3}-9c^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3c^{3}-9c^{2};}-2c^{2}-4c\phantom{;}+16\phantom{;}\phantom{;}\\\phantom{\phantom{;}c\phantom{;}+3-;x^n;}\underline{\phantom{;}2c^{2}+6c\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}2c^{2}+6c\phantom{;}-;x^n;}\phantom{;}2c\phantom{;}+16\phantom{;}\phantom{;}\\\phantom{\phantom{;}c\phantom{;}+3-;x^n-;x^n;}\underline{-2c\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{;;-2c\phantom{;}-6\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}10\phantom{;}\phantom{;}\\\end{array}$
$3c^{2}-2c+2+\frac{10}{c+3}$
Endgültige Antwort auf das Problem
$3c^{2}-2c+2+\frac{10}{c+3}$