Übung
$\frac{2x^4-x^3+2x-3}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-x^3+2x-3$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}2x^{3}-5x^{2}+10x\phantom{;}-18\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}2x^{4}-x^{3}\phantom{-;x^n}+2x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-2x^{4}-4x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}-4x^{3};}-5x^{3}\phantom{-;x^n}+2x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}5x^{3}+10x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}5x^{3}+10x^{2}-;x^n;}\phantom{;}10x^{2}+2x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-10x^{2}-20x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-10x^{2}-20x\phantom{;}-;x^n-;x^n;}-18x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}18x\phantom{;}+36\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}18x\phantom{;}+36\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}33\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}-5x^{2}+10x-18+\frac{33}{x+2}$
Endgültige Antwort auf das Problem
$2x^{3}-5x^{2}+10x-18+\frac{33}{x+2}$