Übung
$\frac{2x^4-2x^3+4x^2-5}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-2x^3+4x^2-5$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}2x^{3}-6x^{2}+16x\phantom{;}-32\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}2x^{4}-2x^{3}+4x^{2}\phantom{-;x^n}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-2x^{4}-4x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}-4x^{3};}-6x^{3}+4x^{2}\phantom{-;x^n}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}6x^{3}+12x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}6x^{3}+12x^{2}-;x^n;}\phantom{;}16x^{2}\phantom{-;x^n}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-16x^{2}-32x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-16x^{2}-32x\phantom{;}-;x^n-;x^n;}-32x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}32x\phantom{;}+64\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}32x\phantom{;}+64\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}59\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}-6x^{2}+16x-32+\frac{59}{x+2}$
Endgültige Antwort auf das Problem
$2x^{3}-6x^{2}+16x-32+\frac{59}{x+2}$