Übung
$\frac{2x^4-11x^3-7x^2+6x+4}{x-6}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-11x^3-7x^2+6x+4$ durch $x-6$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-6;}{\phantom{;}2x^{3}+x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;}x\phantom{;}-6\overline{\smash{)}\phantom{;}2x^{4}-11x^{3}-7x^{2}+6x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-6;}\underline{-2x^{4}+12x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}+12x^{3};}\phantom{;}x^{3}-7x^{2}+6x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-6-;x^n;}\underline{-x^{3}+6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-x^{3}+6x^{2}-;x^n;}-x^{2}+6x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-6-;x^n-;x^n;}\underline{\phantom{;}x^{2}-6x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}x^{2}-6x\phantom{;}-;x^n-;x^n;}\phantom{;}4\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}+x^{2}-x+\frac{4}{x-6}$
Endgültige Antwort auf das Problem
$2x^{3}+x^{2}-x+\frac{4}{x-6}$