Übung
$\frac{2x^4+13x^3+26x^2+50x+15}{2x^2+3x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4+13x^3+26x^2+50x+15$ durch $2x^2+3x+5$
$\begin{array}{l}\phantom{\phantom{;}2x^{2}+3x\phantom{;}+5;}{\phantom{;}x^{2}+5x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}2x^{2}+3x\phantom{;}+5\overline{\smash{)}\phantom{;}2x^{4}+13x^{3}+26x^{2}+50x\phantom{;}+15\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x^{2}+3x\phantom{;}+5;}\underline{-2x^{4}-3x^{3}-5x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}-3x^{3}-5x^{2};}\phantom{;}10x^{3}+21x^{2}+50x\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x^{2}+3x\phantom{;}+5-;x^n;}\underline{-10x^{3}-15x^{2}-25x\phantom{;}\phantom{-;x^n}}\\\phantom{;-10x^{3}-15x^{2}-25x\phantom{;}-;x^n;}\phantom{;}6x^{2}+25x\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x^{2}+3x\phantom{;}+5-;x^n-;x^n;}\underline{-6x^{2}-9x\phantom{;}-15\phantom{;}\phantom{;}}\\\phantom{;;-6x^{2}-9x\phantom{;}-15\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}16x\phantom{;}\phantom{-;x^n}\\\end{array}$
$x^{2}+5x+3+\frac{16x}{2x^2+3x+5}$
Endgültige Antwort auf das Problem
$x^{2}+5x+3+\frac{16x}{2x^2+3x+5}$