Übung
$\frac{2x^3-7x^2-8x-2}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^3-7x^2-8x-2$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}2x^{2}-9x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}2x^{3}-7x^{2}-8x\phantom{;}-2\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-2x^{3}-2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{3}-2x^{2};}-9x^{2}-8x\phantom{;}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}9x^{2}+9x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}9x^{2}+9x\phantom{;}-;x^n;}\phantom{;}x\phantom{;}-2\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;;-x\phantom{;}-1\phantom{;}\phantom{;}-;x^n-;x^n;}-3\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}-9x+1+\frac{-3}{x+1}$
Endgültige Antwort auf das Problem
$2x^{2}-9x+1+\frac{-3}{x+1}$