Übung
$\frac{2x^3+x-6}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^3+x-6$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}2x^{2}-4x\phantom{;}+9\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}2x^{3}\phantom{-;x^n}+x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-2x^{3}-4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{3}-4x^{2};}-4x^{2}+x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}4x^{2}+8x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{2}+8x\phantom{;}-;x^n;}\phantom{;}9x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-9x\phantom{;}-18\phantom{;}\phantom{;}}\\\phantom{;;-9x\phantom{;}-18\phantom{;}\phantom{;}-;x^n-;x^n;}-24\phantom{;}\phantom{;}\\\end{array}$
$2x^{2}-4x+9+\frac{-24}{x+2}$
Endgültige Antwort auf das Problem
$2x^{2}-4x+9+\frac{-24}{x+2}$