Übung
$\frac{2x^{4}-2x^{3}+3x^{2}+5x+10}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-2x^3+3x^2+5x+10$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}2x^{3}-6x^{2}+15x\phantom{;}-25\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}2x^{4}-2x^{3}+3x^{2}+5x\phantom{;}+10\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-2x^{4}-4x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}-4x^{3};}-6x^{3}+3x^{2}+5x\phantom{;}+10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}6x^{3}+12x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}6x^{3}+12x^{2}-;x^n;}\phantom{;}15x^{2}+5x\phantom{;}+10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-15x^{2}-30x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-15x^{2}-30x\phantom{;}-;x^n-;x^n;}-25x\phantom{;}+10\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}25x\phantom{;}+50\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}25x\phantom{;}+50\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}60\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}-6x^{2}+15x-25+\frac{60}{x+2}$
Endgültige Antwort auf das Problem
$2x^{3}-6x^{2}+15x-25+\frac{60}{x+2}$