Übung
$\frac{2c^{4}-8c^{3}+19c^{2}-33c+15}{c^{2}-c+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2c^4-8c^3+19c^2-33c+15$ durch $c^2-c+5$
$\begin{array}{l}\phantom{\phantom{;}c^{2}-c\phantom{;}+5;}{\phantom{;}2c^{2}-6c\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}c^{2}-c\phantom{;}+5\overline{\smash{)}\phantom{;}2c^{4}-8c^{3}+19c^{2}-33c\phantom{;}+15\phantom{;}\phantom{;}}\\\phantom{\phantom{;}c^{2}-c\phantom{;}+5;}\underline{-2c^{4}+2c^{3}-10c^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2c^{4}+2c^{3}-10c^{2};}-6c^{3}+9c^{2}-33c\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}c^{2}-c\phantom{;}+5-;x^n;}\underline{\phantom{;}6c^{3}-6c^{2}+30c\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}6c^{3}-6c^{2}+30c\phantom{;}-;x^n;}\phantom{;}3c^{2}-3c\phantom{;}+15\phantom{;}\phantom{;}\\\phantom{\phantom{;}c^{2}-c\phantom{;}+5-;x^n-;x^n;}\underline{-3c^{2}+3c\phantom{;}-15\phantom{;}\phantom{;}}\\\phantom{;;-3c^{2}+3c\phantom{;}-15\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$2c^{2}-6c+3$