Übung
$\frac{12h^2-19h^3-4h-3+12h^5}{4h^2-1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $12h^2-19h^3-4h-3+12h^5$ durch $4h^2-1$
$\begin{array}{l}\phantom{\phantom{;}4h^{2}-1;}{\phantom{;}3h^{3}\phantom{-;x^n}-4h\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}4h^{2}-1\overline{\smash{)}\phantom{;}12h^{5}\phantom{-;x^n}-19h^{3}+12h^{2}-4h\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}4h^{2}-1;}\underline{-12h^{5}\phantom{-;x^n}+3h^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-12h^{5}+3h^{3};}-16h^{3}+12h^{2}-4h\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}4h^{2}-1-;x^n;}\underline{\phantom{;}16h^{3}\phantom{-;x^n}-4h\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}16h^{3}-4h\phantom{;}-;x^n;}\phantom{;}12h^{2}-8h\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}4h^{2}-1-;x^n-;x^n;}\underline{-12h^{2}\phantom{-;x^n}+3\phantom{;}\phantom{;}}\\\phantom{;;-12h^{2}+3\phantom{;}\phantom{;}-;x^n-;x^n;}-8h\phantom{;}\phantom{-;x^n}\\\end{array}$
$3h^{3}-4h+3+\frac{-8h}{4h^2-1}$
Endgültige Antwort auf das Problem
$3h^{3}-4h+3+\frac{-8h}{4h^2-1}$