Übung
$\frac{125}{729}d^{18}+\frac{1000}{343}e^6$
Schritt-für-Schritt-Lösung
Learn how to solve faktorisierung problems step by step online. Simplify 125/729d^18+1000/343e^6. Wenden Sie die Formel an: a+b=\left(\sqrt[3]{a}+\sqrt[3]{\left|b\right|}\right)\left(\sqrt[3]{a^{2}}-\sqrt[3]{a}\sqrt[3]{\left|b\right|}+\sqrt[3]{\left|b\right|^{2}}\right), wobei a=\frac{125}{729}d^{18} und b=\frac{1000}{343}\cdot e^6. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n, wobei a=\frac{125}{729}, b=d^{18} und n=\frac{1}{3}. Wenden Sie die Formel an: a^b=a^b, wobei a=\frac{125}{729}, b=\frac{1}{3} und a^b=\sqrt[3]{\frac{125}{729}}. Wenden Sie die Formel an: \left(ab\right)^n=a^nb^n, wobei a=\frac{1000}{343}, b=e^6 und n=\frac{1}{3}.
Simplify 125/729d^18+1000/343e^6
Endgültige Antwort auf das Problem
$\left(\frac{5}{9}d^{6}+\frac{10}{7}\cdot e^{2}\right)\left(\frac{25}{81}d^{12}+\left(-\frac{5}{9}\cdot \frac{10}{7}d^{6}+\frac{100}{49}\cdot e^2\right)e^2\right)$