Übung
$\frac{1+\csc\:\left(x\:\right)}{\cot\:\left(x\:\right)+\cos\:\left(x\:\right)}=csc\left(x\:\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (1+csc(x))/(cot(x)+cos(x))=csc(x). Wenden Sie die Formel an: a=b\to a\sin\left(\theta \right)=b\sin\left(\theta \right), wobei a=\frac{1+\csc\left(x\right)}{\cot\left(x\right)+\cos\left(x\right)} und b=\csc\left(x\right). Applying the trigonometric identity: \sin\left(\theta \right)\csc\left(\theta \right) = 1. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\sin\left(x\right), b=1+\csc\left(x\right) und c=\frac{\cos\left(x\right)}{\sin\left(x\right)}+\cos\left(x\right).
(1+csc(x))/(cot(x)+cos(x))=csc(x)
Endgültige Antwort auf das Problem
$x=\frac{1}{4}\pi+\pi n,\:x=\frac{5}{4}\pi+\pi n\:,\:\:n\in\Z$