Übung
$\frac{-x^3-3x+5}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-x^3-3x+5$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{-x^{2}+x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}-x^{3}\phantom{-;x^n}-3x\phantom{;}+5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{\phantom{;}x^{3}+x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{3}+x^{2};}\phantom{;}x^{2}-3x\phantom{;}+5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{-x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}-x\phantom{;}-;x^n;}-4x\phantom{;}+5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}4x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}9\phantom{;}\phantom{;}\\\end{array}$
$-x^{2}+x-4+\frac{9}{x+1}$
Endgültige Antwort auf das Problem
$-x^{2}+x-4+\frac{9}{x+1}$