Übung
$\frac{-4x^3-2x^2-x+1}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-4x^3-2x^2-x+1$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{-4x^{2}+6x\phantom{;}-13\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}-4x^{3}-2x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{\phantom{;}4x^{3}+8x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}4x^{3}+8x^{2};}\phantom{;}6x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{-6x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;-6x^{2}-12x\phantom{;}-;x^n;}-13x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{\phantom{;}13x\phantom{;}+26\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}13x\phantom{;}+26\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}27\phantom{;}\phantom{;}\\\end{array}$
$-4x^{2}+6x-13+\frac{27}{x+2}$
Endgültige Antwort auf das Problem
$-4x^{2}+6x-13+\frac{27}{x+2}$