Übung
$\frac{-3x^3+8x-7}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-3x^3+8x-7$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{-3x^{2}+6x\phantom{;}-4\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}-3x^{3}\phantom{-;x^n}+8x\phantom{;}-7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{\phantom{;}3x^{3}+6x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}3x^{3}+6x^{2};}\phantom{;}6x^{2}+8x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{-6x^{2}-12x\phantom{;}\phantom{-;x^n}}\\\phantom{;-6x^{2}-12x\phantom{;}-;x^n;}-4x\phantom{;}-7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}+8\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}4x\phantom{;}+8\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}1\phantom{;}\phantom{;}\\\end{array}$
$-3x^{2}+6x-4+\frac{1}{x+2}$
Endgültige Antwort auf das Problem
$-3x^{2}+6x-4+\frac{1}{x+2}$