Übung
$\frac{-2x^3-4x^2-4x+7}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $-2x^3-4x^2-4x+7$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{-2x^{2}-2x\phantom{;}-2\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}-2x^{3}-4x^{2}-4x\phantom{;}+7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{\phantom{;}2x^{3}+2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}2x^{3}+2x^{2};}-2x^{2}-4x\phantom{;}+7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}2x^{2}+2x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}2x^{2}+2x\phantom{;}-;x^n;}-2x\phantom{;}+7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{\phantom{;}2x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}2x\phantom{;}+2\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}9\phantom{;}\phantom{;}\\\end{array}$
$-2x^{2}-2x-2+\frac{9}{x+1}$
Endgültige Antwort auf das Problem
$-2x^{2}-2x-2+\frac{9}{x+1}$