Übung
$\frac{\tan\left(x\right)}{\cos\left(x\right)\sqrt{1+\tan^2\left(x\right)}}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. tan(x)/(cos(x)(1+tan(x)^2)^(1/2)). Applying the trigonometric identity: 1+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2. Simplify \sqrt{\sec\left(x\right)^2} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals \frac{1}{2}. Wenden Sie die Formel an: \left(x^a\right)^b=x, wobei a=2, b=1, x^a^b=\sqrt{\sec\left(x\right)^2}, x=\sec\left(x\right) und x^a=\sec\left(x\right)^2. Anwendung der trigonometrischen Identität: \sec\left(\theta \right)=\frac{1}{\cos\left(\theta \right)}.
tan(x)/(cos(x)(1+tan(x)^2)^(1/2))
Endgültige Antwort auf das Problem
$\tan\left(x\right)$