Übung
$\frac{\tan\left(x\right)+\cos\left(x\right)}{\sec\left(x\right)+\cot\left(x\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (tan(x)+cos(x))/(sec(x)+cot(x)). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=\sec\left(x\right), b=\cos\left(x\right), c=\sin\left(x\right), a+b/c=\sec\left(x\right)+\frac{\cos\left(x\right)}{\sin\left(x\right)} und b/c=\frac{\cos\left(x\right)}{\sin\left(x\right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\frac{\sin\left(x\right)}{\cos\left(x\right)}+\cos\left(x\right), b=\cos\left(x\right)+\sec\left(x\right)\sin\left(x\right), c=\sin\left(x\right), a/b/c=\frac{\frac{\sin\left(x\right)}{\cos\left(x\right)}+\cos\left(x\right)}{\frac{\cos\left(x\right)+\sec\left(x\right)\sin\left(x\right)}{\sin\left(x\right)}} und b/c=\frac{\cos\left(x\right)+\sec\left(x\right)\sin\left(x\right)}{\sin\left(x\right)}.
(tan(x)+cos(x))/(sec(x)+cot(x))
Endgültige Antwort auf das Problem
$\sin\left(x\right)$