Übung
$\frac{\tan\left(9x\right)-\tan\left(8x\right)\:}{1+\tan\left(9x\right)\tan\left(8x\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (tan(9x)-tan(8x))/(1+tan(9x)tan(8x)). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}, wobei x=8x. Wenden Sie die Formel an: \frac{a}{b}\frac{c}{f}=\frac{ac}{bf}, wobei a=\sin\left(9x\right), b=\cos\left(9x\right), c=\sin\left(8x\right), a/b=\frac{\sin\left(9x\right)}{\cos\left(9x\right)}, f=\cos\left(8x\right), c/f=\frac{\sin\left(8x\right)}{\cos\left(8x\right)} und a/bc/f=\frac{\sin\left(9x\right)}{\cos\left(9x\right)}\frac{\sin\left(8x\right)}{\cos\left(8x\right)}. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=1, b=\sin\left(9x\right)\sin\left(8x\right), c=\cos\left(9x\right)\cos\left(8x\right), a+b/c=1+\frac{\sin\left(9x\right)\sin\left(8x\right)}{\cos\left(9x\right)\cos\left(8x\right)} und b/c=\frac{\sin\left(9x\right)\sin\left(8x\right)}{\cos\left(9x\right)\cos\left(8x\right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\frac{\sin\left(9x\right)}{\cos\left(9x\right)}+\frac{-\sin\left(8x\right)}{\cos\left(8x\right)}, b=\sin\left(9x\right)\sin\left(8x\right)+\cos\left(9x\right)\cos\left(8x\right), c=\cos\left(9x\right)\cos\left(8x\right), a/b/c=\frac{\frac{\sin\left(9x\right)}{\cos\left(9x\right)}+\frac{-\sin\left(8x\right)}{\cos\left(8x\right)}}{\frac{\sin\left(9x\right)\sin\left(8x\right)+\cos\left(9x\right)\cos\left(8x\right)}{\cos\left(9x\right)\cos\left(8x\right)}} und b/c=\frac{\sin\left(9x\right)\sin\left(8x\right)+\cos\left(9x\right)\cos\left(8x\right)}{\cos\left(9x\right)\cos\left(8x\right)}.
(tan(9x)-tan(8x))/(1+tan(9x)tan(8x))
Endgültige Antwort auf das Problem
$\frac{\left(\tan\left(9x\right)-\tan\left(8x\right)\right)\cos\left(9x\right)\cos\left(8x\right)}{\sin\left(9x\right)\sin\left(8x\right)+\cos\left(9x\right)\cos\left(8x\right)}$