Übung
$\frac{\sin^2x-\cos^2x}{1-\cot^2x}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. (sin(x)^2-cos(x)^2)/(1-cot(x)^2). Applying the trigonometric identity: \sin\left(\theta \right)^2-\cos\left(\theta \right)^2 = -\cos\left(2\theta \right). Anwendung der trigonometrischen Identität: \cot\left(\theta \right)^n=\frac{\cos\left(\theta \right)^n}{\sin\left(\theta \right)^n}, wobei n=2. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=1, b=-\cos\left(x\right)^2, c=\sin\left(x\right)^2, a+b/c=1+\frac{-\cos\left(x\right)^2}{\sin\left(x\right)^2} und b/c=\frac{-\cos\left(x\right)^2}{\sin\left(x\right)^2}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=-\cos\left(2x\right), b=-\cos\left(x\right)^2+\sin\left(x\right)^2, c=\sin\left(x\right)^2, a/b/c=\frac{-\cos\left(2x\right)}{\frac{-\cos\left(x\right)^2+\sin\left(x\right)^2}{\sin\left(x\right)^2}} und b/c=\frac{-\cos\left(x\right)^2+\sin\left(x\right)^2}{\sin\left(x\right)^2}.
(sin(x)^2-cos(x)^2)/(1-cot(x)^2)
Endgültige Antwort auf das Problem
$\sin\left(x\right)^2$