Übung
$\frac{\left(x^2+4\right)^5-x^3-5x}{x^2+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $\left(x^2+4\right)^5-x^3-5x$ durch $x^2+3$
$\begin{array}{l}\phantom{\phantom{;}x^{2}+3;}{\phantom{;}x^{3}\phantom{-;x^n}-4x\phantom{;}\phantom{-;x^n}}\\\phantom{;}x^{2}+3\overline{\smash{)}\phantom{;}x^{5}\phantom{-;x^n}-x^{3}\phantom{-;x^n}-5x\phantom{;}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{2}+3;}\underline{-x^{5}\phantom{-;x^n}-3x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{5}-3x^{3};}-4x^{3}\phantom{-;x^n}-5x\phantom{;}\phantom{-;x^n}\\\phantom{\phantom{;}x^{2}+3-;x^n;}\underline{\phantom{;}4x^{3}\phantom{-;x^n}+12x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{3}+12x\phantom{;}-;x^n;}\phantom{;}7x\phantom{;}\phantom{-;x^n}\\\end{array}$
$x^{3}-4x+\frac{7x}{x^2+3}$
Endgültige Antwort auf das Problem
$x^{3}-4x+\frac{7x}{x^2+3}$