Übung
$\frac{\left(9x^3+11x^2+2x\right)}{x^2+x-1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $9x^3+11x^2+2x$ durch $x^2+x-1$
$\begin{array}{l}\phantom{\phantom{;}x^{2}+x\phantom{;}-1;}{\phantom{;}9x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;}x^{2}+x\phantom{;}-1\overline{\smash{)}\phantom{;}9x^{3}+11x^{2}+2x\phantom{;}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{2}+x\phantom{;}-1;}\underline{-9x^{3}-9x^{2}+9x\phantom{;}\phantom{-;x^n}}\\\phantom{-9x^{3}-9x^{2}+9x\phantom{;};}\phantom{;}2x^{2}+11x\phantom{;}\phantom{-;x^n}\\\phantom{\phantom{;}x^{2}+x\phantom{;}-1-;x^n;}\underline{-2x^{2}-2x\phantom{;}+2\phantom{;}\phantom{;}}\\\phantom{;-2x^{2}-2x\phantom{;}+2\phantom{;}\phantom{;}-;x^n;}\phantom{;}9x\phantom{;}+2\phantom{;}\phantom{;}\\\end{array}$
$9x+2+\frac{9x+2}{x^2+x-1}$
Endgültige Antwort auf das Problem
$9x+2+\frac{9x+2}{x^2+x-1}$