Übung
$\frac{\left(8x^4-6x^3-11x^2-x-9\right)}{\left(4x-1\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $8x^4-6x^3-11x^2-x-9$ durch $4x-1$
$\begin{array}{l}\phantom{\phantom{;}4x\phantom{;}-1;}{\phantom{;}2x^{3}-x^{2}-3x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;}4x\phantom{;}-1\overline{\smash{)}\phantom{;}8x^{4}-6x^{3}-11x^{2}-x\phantom{;}-9\phantom{;}\phantom{;}}\\\phantom{\phantom{;}4x\phantom{;}-1;}\underline{-8x^{4}+2x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-8x^{4}+2x^{3};}-4x^{3}-11x^{2}-x\phantom{;}-9\phantom{;}\phantom{;}\\\phantom{\phantom{;}4x\phantom{;}-1-;x^n;}\underline{\phantom{;}4x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{3}-x^{2}-;x^n;}-12x^{2}-x\phantom{;}-9\phantom{;}\phantom{;}\\\phantom{\phantom{;}4x\phantom{;}-1-;x^n-;x^n;}\underline{\phantom{;}12x^{2}-3x\phantom{;}\phantom{-;x^n}}\\\phantom{;;\phantom{;}12x^{2}-3x\phantom{;}-;x^n-;x^n;}-4x\phantom{;}-9\phantom{;}\phantom{;}\\\phantom{\phantom{;}4x\phantom{;}-1-;x^n-;x^n-;x^n;}\underline{\phantom{;}4x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}4x\phantom{;}-1\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-10\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}-x^{2}-3x-1+\frac{-10}{4x-1}$
Endgültige Antwort auf das Problem
$2x^{3}-x^{2}-3x-1+\frac{-10}{4x-1}$