Übung
$\frac{\left(4m^3+2m^2-4m+3\right)}{2m+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4m^3+2m^2-4m+3$ durch $2m+3$
$\begin{array}{l}\phantom{\phantom{;}2m\phantom{;}+3;}{\phantom{;}2m^{2}-2m\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}2m\phantom{;}+3\overline{\smash{)}\phantom{;}4m^{3}+2m^{2}-4m\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2m\phantom{;}+3;}\underline{-4m^{3}-6m^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-4m^{3}-6m^{2};}-4m^{2}-4m\phantom{;}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}2m\phantom{;}+3-;x^n;}\underline{\phantom{;}4m^{2}+6m\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4m^{2}+6m\phantom{;}-;x^n;}\phantom{;}2m\phantom{;}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}2m\phantom{;}+3-;x^n-;x^n;}\underline{-2m\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{;;-2m\phantom{;}-3\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$2m^{2}-2m+1$