Übung
$\frac{\left(2y^4-3y^3-3y^2+4y-55\right)}{\left(y-3\right)}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2y^4-3y^3-3y^2+4y-55$ durch $y-3$
$\begin{array}{l}\phantom{\phantom{;}y\phantom{;}-3;}{\phantom{;}2y^{3}+3y^{2}+6y\phantom{;}+22\phantom{;}\phantom{;}}\\\phantom{;}y\phantom{;}-3\overline{\smash{)}\phantom{;}2y^{4}-3y^{3}-3y^{2}+4y\phantom{;}-55\phantom{;}\phantom{;}}\\\phantom{\phantom{;}y\phantom{;}-3;}\underline{-2y^{4}+6y^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2y^{4}+6y^{3};}\phantom{;}3y^{3}-3y^{2}+4y\phantom{;}-55\phantom{;}\phantom{;}\\\phantom{\phantom{;}y\phantom{;}-3-;x^n;}\underline{-3y^{3}+9y^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-3y^{3}+9y^{2}-;x^n;}\phantom{;}6y^{2}+4y\phantom{;}-55\phantom{;}\phantom{;}\\\phantom{\phantom{;}y\phantom{;}-3-;x^n-;x^n;}\underline{-6y^{2}+18y\phantom{;}\phantom{-;x^n}}\\\phantom{;;-6y^{2}+18y\phantom{;}-;x^n-;x^n;}\phantom{;}22y\phantom{;}-55\phantom{;}\phantom{;}\\\phantom{\phantom{;}y\phantom{;}-3-;x^n-;x^n-;x^n;}\underline{-22y\phantom{;}+66\phantom{;}\phantom{;}}\\\phantom{;;;-22y\phantom{;}+66\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}11\phantom{;}\phantom{;}\\\end{array}$
$2y^{3}+3y^{2}+6y+22+\frac{11}{y-3}$
Endgültige Antwort auf das Problem
$2y^{3}+3y^{2}+6y+22+\frac{11}{y-3}$