Übung
$\frac{\left(2^2\right)^3\left(2^4\right)^2}{2^5}$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Divide (2^2^32^4^2)/(2^5). Simplify \left(2^2\right)^3 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 2 and n equals 3. Simplify \left(2^4\right)^2 using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 4 and n equals 2. Wenden Sie die Formel an: \frac{a^m}{a^n}=a^{\left(m-n\right)}, wobei a^n=2^5, a^m=2^{6}, a=2, a^m/a^n=\frac{2^{6}\cdot 2^{8}}{2^5}, m=6 und n=5. Wenden Sie die Formel an: a\cdot a^x=a^{\left(x+1\right)}, wobei a=2 und x=8.
Divide (2^2^32^4^2)/(2^5)
Endgültige Antwort auf das Problem
$512$