Übung
$\frac{\left(16x^4-9x^2+25\right)}{4x^2-7x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $16x^4-9x^2+25$ durch $4x^2-7x+5$
$\begin{array}{l}\phantom{\phantom{;}4x^{2}-7x\phantom{;}+5;}{\phantom{;}4x^{2}+7x\phantom{;}+5\phantom{;}\phantom{;}}\\\phantom{;}4x^{2}-7x\phantom{;}+5\overline{\smash{)}\phantom{;}16x^{4}\phantom{-;x^n}-9x^{2}\phantom{-;x^n}+25\phantom{;}\phantom{;}}\\\phantom{\phantom{;}4x^{2}-7x\phantom{;}+5;}\underline{-16x^{4}+28x^{3}-20x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-16x^{4}+28x^{3}-20x^{2};}\phantom{;}28x^{3}-29x^{2}\phantom{-;x^n}+25\phantom{;}\phantom{;}\\\phantom{\phantom{;}4x^{2}-7x\phantom{;}+5-;x^n;}\underline{-28x^{3}+49x^{2}-35x\phantom{;}\phantom{-;x^n}}\\\phantom{;-28x^{3}+49x^{2}-35x\phantom{;}-;x^n;}\phantom{;}20x^{2}-35x\phantom{;}+25\phantom{;}\phantom{;}\\\phantom{\phantom{;}4x^{2}-7x\phantom{;}+5-;x^n-;x^n;}\underline{-20x^{2}+35x\phantom{;}-25\phantom{;}\phantom{;}}\\\phantom{;;-20x^{2}+35x\phantom{;}-25\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$4x^{2}+7x+5$